22) M. Lee and A. Pisani, The Saxl hypergraph of a permutation group, arXiv:2505.13849.
21) M. Lee and K. Rekvényi, Prime simplicial complexes of finite groups, arXiv:2506.19032.
20) M. Lee and K. Rekvényi, On the diameter of intersection graphs of finite groups, arXiv:2403.04157.
19) M. Lee, Primitive almost simple IBIS groups with sporadic socle, arXiv:2302.01521.
18) M. Lee, T. Popiel and G. Verret, Derangements in permutation groups with two orbits, Bull. Aust. Math. Soc., to appear.
17) S. D. Freedman, H. Y. Huang, M. Lee and K. Rekvényi, On the generalised Saxl graphs of permutation groups, Algebr. Comb., to appear.
16) H. Dietrich, M. Lee, A. Pisani and T. Popiel, Explicit construction of the maximal subgroups of the Monster, J. Algebra, 689 (2026), 862–895.
15) M. Lee, Computational group theory: bedrock and new frontiers, Adv. Group Theory Appl. 20 (2025), 65–120.
14) H. Dietrich, M. Lee and T. Popiel, The maximal subgroups of the Monster, Adv. Math. 469 (2025), 110214.
13) M. Lee and T. Popiel, Recognisability of the sporadic groups by the isomorphism types of their prime graphs, J. Group Theory, to appear.
12) M. Lee and P. Spiga, A classification of finite primitive IBIS groups with alternating socle, J. Group Theory, 26 (2023), no. 5, 915–930.
11) M. Lee and G. Verret, Extremely primitive groups and linear spaces, Des. Codes Cryptogr., 91 (2023), 3227–3240.
10) M. Lee and T. Popiel, Saxl graphs of primitive affine groups with sporadic point stabilisers, Int. J. Algebra Comput., 33 (2023), no. 2, 369–389.
9) M. Lee and T. Popiel, M, B and Co_1 are recognisable by their prime graphs, J. Group Theory 26 (2023), no. 1, 193–205.
8) T. C. Burness and M. Lee, On the classification of extremely primitive affine groups, Israel J. Math. 255 (2023), 265–282.
7) M. Lee, Regular orbits of quasisimple linear groups II, J. Algebra 586 (2021), 643–717.
6) M. Lee, Regular orbits of quasisimple linear groups I, J. Algebra 586 (2021), 1122–1194.
5) M. Lee and M. W. Liebeck, Bases of quasisimple linear groups, Algebra Number Theory 12 (2018), no. 6, 1537–1557.
4) J. Bamberg, J. Lansdown and M. Lee, On m-ovoids of regular near polygons, Des. Codes Cryptogr. 86 (2018), no. 5, 997–1006.
3) J. Bamberg, M. Lee, K. Momihara and Q. Xiang, A new infinite family of hemisystems of the Hermitian surface, Combinatorica 38 (2018), no. 1, 43–66.
2) J. Bamberg and M. Lee, A relative m-cover of a Hermitian surface is a relative hemisystem, J. Algebraic Combin. 45 (2016), no. 4, 1217–1228.
1) J. Bamberg, M. Lee and E. Swartz, A note on relative hemisystems of Hermitian generalised quadrangles, Des. Codes Cryptogr. 81 (2016), no. 1, 131–144.